The competence building project “PredictCUI: Prediction of water liquid and vapour migration for mitigating corrosion under insulation” received funding by the Norwegian Research Council. Here, I will in collaboration with Prof. Alex Hansen from NTNU/Porelab, researchers from SINTEF Energy Research and the industry deal with one of the major challenges at the Norwegian Continental Shelf, Corrosion under insulation (CUI). The piping in process plants is frequently insulated. CUI occurs under externally clad or jacketed insulation due to the penetration of water. It constitutes a major challenge for the oil and gas industry. If not mitigated, CUI leads to structural failure with serious consequences, ranging from leakages to explosions. One out of five major oil and gas incidents within the EU since 1984 and 50% of hydrocarbon leaks on the Norwegian Continental Shelf have been caused by CUI. Hence, to mitigate CUI is very important. The figure below shows how water can be adsorbed by a porous insulation material (taken by Åsmund Ervik from SINTEF Energy Research). The typical insulation material resembles the negative image of a porous rock: the porosity is very high (above 90%), and the pore space resides around interwoven fibers. In the project, one of the goals is to develop a predictive model for transport of water vapor and liquid through the highly porous insulation material in order to understand where the moisture migrates and where corrosion could potentially occur. One PhD will be educated on this topic in the group.